Review Article


Strategies for preservation of memory function in patients with brain metastases

Nicholas B. Dye, Vinai Gondi, Minesh P. Mehta

Abstract

Background: Cognitive decline, particularly in memory, is a side effect seen in patients with brain metastases and when severe, can have a significant impact on their quality of life. It is most often the result of multiple intersecting etiologic factors, including the use of whole brain radiation therapy, effects of which, in part, are mediated by damage within the hippocampus. A variety of clinical factors and comorbidities may impact the likelihood and severity of this cognitive decline, and affected patients should be considered for evaluation in a comprehensive neuro-rehabilitation or “brain fitness” program.
Prevention strategies of neurocognitive decline due to whole brain radiotherapy (WBRT): Avoiding WBRT is warranted for some patients with brain metastases; particularly those <50 years old. However, when WBRT is clinically indicated, hippocampal avoidance WBRT (HA-WBRT) has been shown to significantly reduce memory decline compared to historical controls without compromising treatment efficacy. Additionally, the NMDA receptor antagonist memantine and renin-angiotensin-aldosterone system (RAAS) blockers have shown promise as neuroprotective agents that could be used prophylactically with radiation.
Treatment of patients with neurocognitive decline: After the onset of neurocognitive decline the treatment is largely symptom-driven, however simply screening for and treating depression, fatigue, anxiety, cognitive slowing, and other processes may alleviate some impairment. Stimulants such as methylphenidate may be useful in treating symptoms of fatigue and cognitive slowing. Other treatments including donepezil and cognitive rehabilitation have been extensively tested in the population at risk for dementia, although they have not been adequately studied in patients following cranial radiotherapy. An innovative hypothetical approach is the use of intranasal metabolic stimulants such as low dose insulin, which could be valuable in improving cognition and memory, by reversing impaired brain metabolic activity.
Conclusions: Prevention of neurocognitive decline in patients with brain metastases requires a multimodal approach tailored to each patient’s need, avoiding WBRT in some, altering the WBRT plan in others, and/or using neuroprotective prophylaxis in those in whom avoidance cannot be utilized. Likewise treatment will require a personalized combination of strategies optimized to address the patient’s symptoms.

Download Citation